Table of Contents

1 Introduction	1
1.1 Applicable product	1
1.2 Applicable personnel	1
1.3 Symbol definition	1
1.4 Version information	1
2 Safety instructions	2
2.1 General safety instructions	2
2.2 PV array safety	2
2.3 Inverter safety	3
2.4 Battery safety	4
2.5 Personnel requirements	4
2.6 EU compliance statement	4
3 Product overview	5
3.1 Product description	5
3.2 System configuration option	6
3.3 Application scenarios	8
3.3.1 System connection method	9
3.4 Supported grids	14
3.5 Operating mode	14
3.6 Operating status of inverter	18
3.7 Appearance description	19
3.7.1 Inverter	19
3.7.2. Distribution box	22
3.7.3 Battery (EHBS-P5-TH)	29
3.7.4 Base support	
4 Storage and inspection of inverter	32
4.1 Inspection before acceptance	32
4.2 Packing list of inverter	32
4.3 Packing list of EHBS-P5-TH household energy storage battery	34
4.4 Packing list of PDU-GU-Y /PDU-GU-F	34
5 Installation	36
5.1 Installation preparation	36

5.1.1 Installation environment requirements	36
5.1.2 Requirements of installation tools	
5.1.3 Selection of installation location	38
5.2 System installation	39
5.2.1 Handling of inverter and battery	39
5.2.2 System installation	40
6 Electrical connection	50
6.1 Connection of ground wire	52
6.2 PV side connection	53
6.3 AC side connection	55
6.3.1 LOAD side connection	55
6.3.2 GEN side connection	58
6.3.3 Grid side connection	59
6.3.4 Connecting N and PE cables in distribution box	59
6.4 Connection of kilowatt-hour meter	62
6.4.1 CT connection mode (standard configuration)	62
6.4.2 Connection mode of kilowatt-hour meter (optional)	64
6.5 Communication side connection	69
6.5.1 WIFI remote monitoring module	69
6.5.2 DRM communication	70
6.5.3 Communication for parallel operation	72
6.5.4 COM communication interface	72
7 Display panel	74
7.1 Description of signal indicator lamp	74
7.2 Definition of LED status display	75
7.3 LED failure status	75
8 Commissioning	78
8.1 Inspection before operation	78
8.2 Powering on for the first time	78
9 Use of APP for EAHI20KTH-S	79
9.1 Download and Installation of APP	79
9.2 APP Registration and powering on inverter	79
10 System maintenance	83
10.1 Routine maintenance of inverter	83

10.2 Maintenance of inverter unused for long period	83
10.3 Power off inverter	83
10.4 Battery maintenance	84
10.5 Battery safety	84
10.6 Battery storage and charging	84
11 Troubleshooting	86
11.1 Fault level list	86
11.2 Troubleshooting	91
-	
12 Technical data	96
12 Technical data	96 96
12 Technical data 12.1 System specification 12.2 Nameplate	
12 Technical data 12.1 System specification 12.2 Nameplate 13 EAHI10-20KTH Series packaging and disposal	
 12 Technical data 12.1 System specification	
 12 Technical data	
 12 Technical data	

1 Introduction

This document is prepared to mainly introduce the product information, installation, wiring, configuration, commissioning, troubleshooting and maintenance of the inverters. Before installation ruse of the inverters, please read this manual carefully to understand the safety information, functions and features of the inverters. This document may be updated from time to time. Please visit our official website for the latest version and more information.

1.1 Applicable product

This document is applicable to the following inverter models: EAHI10KTH-S, EAHI15KTH-S and EAHI20KTH-S

1.2 Applicable personnel

This document is only applicable to the professionals who are familiar with local regulations and standards and electrical systems, and have received professional training and have knowledge about this product.

1.3 Symbol definition

 Danger

 This document is only applicable for the professionals who are familiar with local regulations and standards and electrical systems, and have received professional training and have knowledge about this product.

 Warning

 It represents moderate potential hazards that may cause death or serious injury if not avoided.

 Caution

 It represents low potential hazards that may cause moderate or minor injury if not avoided.

 Attention

 It represents the emphasis or supplement, which may provide tips or tricks to optimize the product, thus helping you to solve some problems or save time.

1.4 Version information

V1.0 First issue

2 Safety instructions

The safety instructions contained in this document must be followed during equipment operation.

Attention

The inverter has been designed and tested in strict accordance with safety regulations. However, it is required to read relevant safety instructions before making any operation on an electrical device. Any improper operation may result in serious injury or property damage.

2.1 General safety instructions

Attention

- This document may be updated from time to time due to product version upgrade or other reasons. Unless otherwise specified, the safety instruction provided in the product label or the user manual cannot be replaced by any part of this document. All information provided in this document is for instruction only.
- Read this document carefully before installing the inverter to understand the inverter and relevant attention items.
- All operations on the inverter must be made by qualified and professional electrical technicians who are familiar with the relevant standards and safety regulations of the place where the project is located.
- During operation on the inverter, use insulation tools and wear personal protective equipment to
 ensure personal safety. During touching any electronic components, wear ESD gloves, ESD wrist
 straps and ESD clothing, etc. to protect the inverter against ESD.
- The manufacturer will not be responsible for any equipment damage or personal injury resulting from the failure to install, use, or configure the inverter in accordance with this document. Contact your supplier in case of any such damage or injury.

2.2 PV array safety

Danger

Connect the PV cables of the inverter by using the DC wiring terminals delivered with the inverter. Using other DC wiring terminals may cause serious consequences. Therefore, the manufacturer will not responsible for any damages caused therefrom.

Warning

- Ensure that the array frame and the support systems are well grounded.
- After connection of the DC cables, ensure that the cables are securely connected.
- Measure the positive and negative terminals of the DC cable by a multimeter to ensure that they are correctly connected, and that the voltage is within the allowable range.
- Do not connect the PV string on a same circuit to multiple inverters. Otherwise, the inverters may be damaged.
- The photovoltaic modules used together with the inverter must comply with Class A requirements of IEC61730.

2.3 Inverter safety

Warning

- Ensure that the voltage and frequency of the grid connection point meet the grid connection requirement of the inverter.
- A protection device, such as a circuit breaker or fuse, is recommended for the AC side of the inverter. The specification of the protection device should be greater than 1.25 times the rated AC output current of the inverter.
- The protective earthing cable of any inverter must be securely connected. If multiple inverters are installed, ensure that the protective earthing points on the housings of all inverters are equipotential-connected.
- If a battery is not installed in the PV system, it is not recommended to use BACK-UP function. The system power risks caused therefrom will be excluded from the manufacturer's warranty.

Danger

- After the inverter is installed, the labels and warning signs on the housing must be clearly visible, and must not be blocked, altered or damaged.
- The signs on the inverter housing are as follows:

<u></u>	Due to high surface temperature of the inverter, do not touch the inverter during its operation. Otherwise, it is possible to cause burning.		Delayed discharge. After the inverter is powered off, wait for 5min to fully discharge the inverter.
	Before operation, read this document carefully.		The operating inverters may cause potential risks. Take protective measures during making any operation.
	The inverter cannot be disposed as domestic waste, and should be disposed according to local laws and regulation, or sent to the manufacturer.	(-)	Connection point of protective earthing cable
(€	CE marking		RCM marking

2.4 Battery safety

Caution

- The batteries used for stacking with the inverters comply with relevant national and international certification standards. Please store, install and use such batteries correctly as required.
- Read the user manual of the battery carefully before installing the inverter to understand the battery and its considerations. Operate strictly according to the user manual of the battery.
- Battery current may be affected by some factors, such as temperature, humidity and weather condition, which may cause battery current limiting and affect the carrying capacity.
- In case of failure to normally start the battery, please contact the after-sales service center as soon as possible. Otherwise, the battery may be permanently damaged.

2.5 Personnel requirements

Attention

- The personnel in charge of inverter installation and maintenance must be strictly trained to master the safety instructions and the correct operation methods.
- Only qualified professionals or trained personnel are allowed to install, operate, maintain or replace the inverter or its components.

2.6 EU compliance statement

The devices with wireless communication function that can be sold in the European market meet the following directive requirements:

- Radio Equipment Directive 2014/53/EU (RED)
- Restrictions of Hazardous Substances Directive 2011/65/EU and (EU) 2015/863 (RoHS)
- Waste Electrical and Electronic Equipment 2012/19/EU
- Registration, Evaluation, Authorization and Restriction of Chemicals (EC) No 1907/2006 (REACH)

The devices without wireless communication function that can be sold in the European market meet the following directive requirements:

- Electromagnetic compatibility Directive 2014/30/EU (EMC)
- Electrical Apparatus Low Voltage Directive 2014/35/EU (LVD)
- Restrictions of Hazardous Substances Directive 2011/65/EU and (EU) 2015/863 (RoHS)
- Waste Electrical and Electronic Equipment 2012/19/EU
- Registration, Evaluation, Authorization and Restriction of Chemicals (EC) No 1907/2006 (REACH).

For more EU compliance statements, please contact your supplier.

3 Product overview

3.1 Product description

EAHI10-20KTH-S-series, a hybrid system for residential buildings, consists of inverters and batteries. Through the system, the solar energy can be converted into electrical energy and stored in the battery for future use. The system can be operated in the mode of self-generating electricity and self use, the mode of supplying the excessive energy to the gird and other set operating modes, and featured with high efficiency, high reliability, parallel operation and intelligent monitoring, etc.

Product features:

- > It supports PV inverters, generators and micro-grids;
- > It supports multiple mode settings, local independent operation and off-peak settings;
- > The inverter and the battery pack are stacked to facilitate installation;
- It is provided with real time monitoring on APP, and supports online remote OTA upgrade to facilitate operation and maintenance.
- It features a high-efficiency DCDC module in the high voltage battery which achieves more reliable expansion of the battery pack;
- It supports the parallel connection of multiple inverter EPS outputs, and can be expanded according to the requirements of small industrial and commercial applications.
- The input power of the mains and PV is over-configured by 1.5-2 times to achieve more stable system operation.
- > RSD and AFCI are optional, which provides higher safety protection for the system;

Fig. 3.1.1 Product appearance

3.2	System	configuration	option
-----	--------	---------------	--------

System	Mast	ter cluster config	Expanded cluster configuration		
capacity	Inverter	Distribution	High-voltage	Distribution	High-voltage
Recommended	10/15/20K	box for the	battery	box for the	battery
configuration		master	EHBS-P5-TH	expanded	EHBS-P5-TH
scheme		cluster		cluster	
		PDU-GU-Y		PDU-GU-F	
10 kWh	1	1	2	0	0
15 kWh	1	1	3	0	0
20 kWh ¹	1	1	4	0	0
20 kWh ²	1 1 2		2	1	2
25 kWh 1		1	2	1	3
30 kWh	Vh 1 1 3		3	1	3
35 kWh	Wh 1 1		3	1	4
40 kWh	40 kWh 1		4	1	4
45 kWh	1	1 3		2	6
50 kWh	50 kWh 1 1 3		3	2	7
55 kWh	1	1	3	2	8
60 kWh	60 kWh 1 1 4		2	8	

System chart for the recommended system capacity configuration scheme

3.3 Application scenarios

Warning

- The photovoltaic system is not suitable for connecting with the equipment requiring stable power supply, such as life-sustaining medical devices and banking devices. Ensure that no personal injury is caused in case of the power failure in the system.
- If a battery is not installed in the PV system, it is not recommended to use BACK-UP function.
 The system power risks caused therefrom may be excluded from the manufacturer's warranty.
- Battery current may be affected by some factors, such as temperature, humidity and weather conditions, which may cause battery current limiting and then affect the carrying capacity.
- When the overload protection is triggered for a single time, the inverter can automatically restart; if the overload protection is triggered for multiple times, the restarting time may be delayed, and if it is required to restart the inverter as soon as possible, the inverter may be restarted immediately through the APP.
- When the load capacity exceeds the rated power of the inverter in case of the power failure on the grid, the inverter off-grid function will be automatically disabled; before restarting, stop the large load to ensure that the load power is less than the rated power of the inverter.
- The BACK-UP output port of the inverter has overload capability and EPS function (switching time < 20ms) to normally supply the power to ordinary household load in case of the power failure on the grid. To ensure EPS switching and the power supply stability of the load, do not use the loads requiring high starting current, such as high-power pumps. The loads supported by the inverter are as follows:</p>
- ➤ Inductive load and capacitive load are provided with the total power ≤1/3 * rated output power of the inverter.

3.3.1 System connection method

Connection method 1:

General system connection method: Used in new photovoltaic and energy storage scenarios.

Connection method 2:

Generator connection: When it is required to install a generator, connect the generator output to the generator input port on the the inverter. See 3.5 "Generator Mode" for the specific operation mode.

Connection method 3:

AC coupling 1: When a PV inverter has been installed, connect the output cable of the PV inverter to the generator input port of the inverter without needing additional CT.

Connection method 4:

AC coupling 2: When a PV inverter has been installed, connect CT to the CT pin in the COM port on the local panel to collect the output current of the grid-tied inverter. For the wiring details, see 6.5.4 COM Communication Port. See 3.5 "PV Inverter Mode" for the specific operation mode.

Connection method 5:

Intelligent load mode: Set the generator input connection point as the load connection point. For the operation mode, see 3.5 "Intelligent Load Mode".

Note 1: The figure shows the example of connecting through CT. If a watt-hour meter is used, replace the CT with the watt-hour meter. See 6.4 for installation of the CT and the watt-hour meter. Note 2: see Section 6 for the detail about other electrical wiring.

3.4 Supported grids

EAHI10-20KTH-S intelligent household power supply may be connected with the grid system by four different wiring modes TN-C /TN-S/TN-C-S/TT. The supported grid types are as follows:

Fig. 3.4.1 Supported grid types

Note: if it is used for the TT network, the voltage of N to PE should be less than 30V.

3.5 Operating mode

Mode name		Operation logic			
Anti tind mode		During connection with the grid, the excessive energy is not			
	Anti-tied mode	supplied from the PV system to the grid in all operating modes.			
		(1) The PV energy is supplied first to the backup load and then			
		used for the battery charging. The excessive energy is			
		supplied to the household load and the grid;			
	Battery priority mode	(2) If the PV energy is less than that required by the backup			
		load, the battery will discharge to further supply energy for			
		the backup load, but it will not supply energy to the grid;			
		(3) The grid will not supply power for the battery charging;			
		(1) The PV energy is supplied first to the backup load and the			
		household load, and then used for the battery charging, The			
Cuid		excessive energy is supplied to the grid;			
Glid-	Household load	(2) If the PV energy is less than that required by the backup load			
lied	priority mode	and the household load, the battery will discharge to further			
mode		supply energy for the backup load and the household load,			
		but it will not supply energy to the grid;			
		(3) The grid will not supply power for the battery charging;			
		(1) The PV energy is supplied first to the backup load and then			
		to the household load, and the grid. The excessive energy is			
		used for the battery charging;			
	Grid priority mode	(2) If the PV energy is less than that required by the backup			
		load, the battery will discharge to further supply energy for			
		the backup load, but it will not supply energy to the grid;			
		(3) The grid will not supply power for the battery charging;			

	Full power grid feeding mode	 (1) The PV energy is supplied first to the backup load and then to the household load, and the grid. The excessive energy is used for the battery charging; (2) If The PV energy is less than that required by the maximum output power of the inverter, the battery will discharge to further supply energy for maintaining the maximum power output of the inverter; (3) The grid will not supply power for the battery charging;
	Emergency backup mode	 (1) The PV energy is first used for battery charging, and then for power supply to the backup load. The excessive energy is supplied to the household load and the grid; (2) If the PV energy is less than that required by the backup load, the grid will further supply power for the backup load and household load; (3) In case of no or very low PV power, the grid will supply power for battery charging, the backup load and household load;
	AC charging-Off backup mode	 (1) The PV energy is first used for battery charging, and then for power supply to the load. The excessive energy is supplied to the grid; (2) If the PV energy is less than that required by the backup load, the grid will further supply power for the backup load and household load; (3) In case of no or very low PV power, the grid will supply power for the backup load and household load, but it will not supply power for the battery charging;
	Pure PV mode	 The battery is chargeable but not dischargeable (1) The PV energy is first used for the backup load and the household load, and then for battery charging. The excessive energy is supplied to the grid; (2) If the PV energy is less than that required by the backup load and the household load, the grid will further supply power for the backup load and the household load; (3) The grid will not supply power for battery charging;
	Forced off-grid mode	When the grid is normal, it is forced to operate in off-grid mode
Off-	grid mode (off-grid)	(1) The PV energy is first used for the load and then for battery charging;(2) In case of insufficient or no PV energy, the PV will supply power for the load together with the battery.

		The generator can be started only in case of no mains or mains
		fault.
		(1) Enable the mode of charging the battery by generator:
		When the voltage and SOC of the battery are less than the
		set values, the generator will be started to charge the battery
		and also supply the power to the load;
		When the voltage and SOC of the battery are higher than the
		set values, the generator will be powered off, and then the
	Generator	battery will supply the power to the load;
	mode	Disable the mode of charging the battery by generator:
	(No grid)	When the voltage and SOC of the battery are less than the
		set value, the generator will be started to supply the power
		to the load, but not to charge the battery.
		When the voltage and SOC of the battery are higher than set
		value, the generator will be powered off, and then the battery
		will supply the power to the load;
		Note: The generator is connected to the generator interface of
		the inverter
		(1)The PV inverter is connected to the generator interface of the
Intelligent		machine:
micro-gria		Available mains:
mode		The relay of the generator interface is closed to connect the
		PV inverter and also to achieve the battery charging, the
		power supply to the load and grid-tied generation;
		No mains:
		When the voltage and SOC of the battery are lower than the
		set values, the relay of the generator interface will be closed
		to connect the PV inverter and also to achieve the battery
	PV Inverter	charging and the power supply to the load;
	mode	When the voltage and SOC of the battery are higher than set
		values, the relay of the generator interface will be
		disconnected to disconnect the PV inverter and then the
		battery will supply power to the load;
		(2)The PV inverter is directly connected to the grid and
		connected to the inverter through CT:
		Available mains:
		When the voltage and SOC of the battery are lower than the
		set values,?the PV inverter first supplies power to the load,
		and then supplies power to the backup load through the
		inverter and then charges the battery, and the remaining

	 energy is supplied to the grid; If the energy of the PV inverter is insufficient, the grid adds energy to supply power to the load, and the gird does not charge the battery. When the voltage and SOC of the battery are higher than set values, the PV inverter first supplies power to the load, and then supplies power to the backup load through the inverter and then charges the battery. The remaining energy is csupplied to the grid; If the energy of the PV inverter is insufficient, the battery discharge to supply power to the load. No mains: The inverter works in off-grid mode. Note: The photovoltaic inverter, and the power of the photovoltaic inverter is less than the rated power of the generator;
Intelligent load mode	 In this mode, the generator input connection point is set as the load connection point. (1) Enable "intelligent load and mains normally-off mode" In case of normal mains, the relay of the generator interface will be closed to supply the power to the load connected with the generator interface; In case of mains fault, when the SOC and voltage of battery and PV power are higher than the set values, the relay of the generator interface will closed to supply the power to the load connected with the generator interface; when the SOC or voltage of battery or the PV power is less than the set value, the relay of the generator interface will be disconnected, and then the load connected with the generator interface will be disconnected from the power. (2) Disable "Intelligent load and mains normally-off mode" When the SOC and voltage of battery and the PV power are higher than the set values, the relay of the generator interface will be closed to supply power to the load connected with the generator interface will be closed to supply power to the load connected with the generator interface will be closed to supply power to the load connected with the generator interface will be closed to supply power to the load connected with the generator interface will be closed to supply power to the load connected with the generator interface will be closed to supply power to the load connected with the generator interface will be closed to supply power to the load connected with the generator interface will be disconnected from the power.

Table 3.5.1 Description of operating mode

3.6 Operating status of inverter

Fig. 3.6.1 Operating status of inverter

No.	Status	Note			
		Operate in the waiting mode after powering on			
4	Waiting	• When the conditions are met, the inverter will operate in the self-check			
1	mode	mode;			
		 In case of any failure, the inverter will operate in the fault mode 			
		Before starting, the inverter is in the self-check mode of self-check and			
		initialization;			
		• If the conditions are met, the inverter will operate in the grid-tied mode			
2	Self-check	• If the grid is not detected, the inverter will operate in the off-grid mode			
	mode	• If the inverter has no off-grid function, it will operate in the waiting mode			
		In case of failure in the self-check, the inverter will operate in the fault			
		mode			
		Grid-tied mode:			
	Grid-tied	• If the grid is not detected, the inverter will operate in the off-grid mode			
		 If the fault is detected, the inverter will operate in the fault mode 			
3 mode		• If it is detected that the grid conditions fail to meet the requirements of			
		grid-tied operation, and that the off-grid output function is not enabled,			
		the inverter will operate in the waiting mode			
		In case of the gird failure, the operating mode of inverter will be switched			
		into the off-grid mode:			
4	Off-grid	 If the fault is detected, the inverter will operate in the fault mode 			
4	mode	• If it is detected that the grid conditions meet the requirements of grid-			
		tied operation, and the off-grid output function is enabled, the inverter			
		will operate in the self-check mode;			
5	Fault mode	• The inverter will operate in the failure mode if the fault is detected, and			
5	Fault mode	will operate in the waiting mode after the fault is removed			

3.7 Appearance description

3.7.1 Inverter

1. Appearance and dimensions of inverter

Dimensions: 650mm*270mm*640mm

Top View

2. Side ports of inverter

No.	Identification	Purpose	No.	Identification	Purpose
1	Nil	Buzzer	9	DC SWITCH	PV switch
2	PV1-	PV1-input	10	PV1+	PV1+ input
3	PV2-	PV2-input	11	PV2+	PV2 +input
4	LOAD	Load interface	12	GEN	Generator interface
5	GRID	Grid interface	13	СОМ	Upper computer access communication
6	WIFI	Remote communication	14	PARALLEL OUT	Parallel output (reserved)
7	PARALLEL IN	Parallel input (reserved)	15	USB	Firmware upgrade
8	CT/METER	External CT or kilowatt-hour meter signal input	16	DRM	Requirement of Australian safety code (Reserved)

3. Bottom battery ports of inverter

Fig. 3.7.1.1 Bottom battery ports of inverter GP25Z

No.	Identification	No.	Identification	No.	Identification
1	HV+	2	HV+	3	Reserved
4	Reserved	5	RS485A	6	RS485B
7	RS485A	8	RS485B	9	CANH
10	CANL	11	CANH	12	CANL
13	Reserved	14	START+	15	START-
16	Reserved	17	Reserved	18	Reserved
19	Reserved	20	Reserved	21	Reserved
22	Reserved	23	Reserved	24	HV-
25	HV-				

3.7.2. Distribution box

- 1. PDU-GU-Y (integrated) distribution box
- (1) Appearance and dimensions

Dimensions: 650mm*270mm*150mm

Fig. 3.7.2.1 Appearance of PDU-GU-Y

(2) Description of top ports for PDU-GU-Y

No.	Identification	No.	Identification	No.	Identification
1	HV+	2	HV+	3	Reserved
4	Reserved	5	RS485A	6	RS485B
7	Reserved	8	Reserved	9	Reserved
10	Reserved	11	CAN1H	12	CAN1L
13	Reserved	14	START+	15	START-
16	Reserved	17	Reserved	18	Reserved
19	Reserved	20	Reserved	21	Reserved
22	Reserved	23	Reserved	24	HV-
25	HV-			•	

Fig. 3.7.2.2 Top ports of PDU-GU-Y

(3) Description of bottom ports for PDU-GU-Y

Fig. 3.7.2.3 Bottom ports of PDU-GU-Y

(4) Description of side panel

Fig. 3.7.2.4 Description of left side panel for PDU-GU-Y

Identification	Note
PUSE	Fuse of distribution box
ON/OFF	Switch of distribution box
SWITCH	Switch used to connect or disconnect the inverter with the distribution box

Fig. 3.7.2.5 Description of right side panel for PDU-GU-Y

Identification	Note			
PARALLEL IN	Parallel input/distribution box connection interface, which can be used as a network port for communication/ a connection port for 120Ω			
	Parallel output/ distribution box connection interface, which can be			
FARALLEL OUT	used as a network port for communication/ a connection port for 120			
	terminal resistance			
BAT+	Battery parallel/ input/ output			
BAT-	Battery parallel/ input/ output			
PCS	Communication port for inverter and distribution box			
NET	Network communication port for distribution box			

2. PDU-GU- F (split) distribution box

(1) Appearance and dimensions

Dimensions: 650mm*270mm*150mm

(2) Description of bottom ports for PDU-GU- F

Fig. 3.7.2.7 Bottom ports of PDU-GU- F

(3) Description of monitoring panel for PDU-GU-Y and PDU-GU-F

Fig. 3.7.2.8 Monitoring panel for PDU-GU-F

1) Description of operating and alarm indicator status

	Normal/	RUN	ALM	SOC LED indicator			r		
Status	alarm/ protection	•	•	•	•	•	•	Remark	
Shutdown	Sleep	OFF	OFF	OFF	OFF	OFF	OFF	Fully OFF	
	Normal	Elicker 2	OFF					Standby	
	Normai	FIICKEI Z	OFF					status	
Standby	Alorm	Elickor 2	Elickor 2	Indi	nato acco	rding to 9	200	Alarm	
	AldIII	FIICKEI Z	FIICKEI Z	Indicate according to SOC				given	
	Fault	OFF	Flicker 2		Failed				
	Namad	Normally					Normal		
	Normai	ON	OFF					operation	
Charging	Alorm	Normally	Elickor 2				Alarm		
Charging	AldIII	ON	FIICKEI Z	Indicate according to SOC				given	
	Fault	OFF	Normally					Failed	
		011	ON					i alleu	
	Normal	Normally	OFF					Normal	
	Normai	ON	011					operation	
Discharge	Alarm	Normally	Elicker 2	Indicate according to SOC				Alarm	
Discharge	AidIII	ON					given		
	Foult	OFF	Normally			Failed			
	raull	UFF	ON					Failed	

Note: the "flicker 2" means flicker once every 1s: On for 0.5s and Off for 0.5s

2) Description of indicator lamp in charging and discharge mode

Status	Status Operation mode		DCHG
Charging	Constant current charge Normally C		OFF
	Constant voltage and limited current	Normally ON	OFF
	Floating charge	Normally ON	OFF
Discharge	Discharge	OFF	Normally ON

Note: the "flicker 2" means flicker once every 1s: On for 0.5s and Off for 0.5s

3) Description of SOC indicator status

Status		Charging				Discharge			
SOC indicator lamp		L4 <mark>-</mark>	L3 <mark>-</mark>	L2 -	L1 <mark>-</mark>	L4 <mark>-</mark>	L3 <mark>-</mark>	L2 -	L1 <mark>-</mark>
	0-25%	OFF	OFF	OFF	Flicker 2	OFF	OFF	OFF	Flicker 2
SOC (%)	25-50%	OFF	OFF	Flicker 2	Normally ON	OFF	OFF	Flicker 2	Normally ON
	50-75%	OFF	Flicker 2	Normally ON	Normally ON	OFF	Flicker 2	Normally ON	Normally ON
	75- 100%	Flicker 2	Normally ON	Normally ON	Normally ON	Flicker 2	Normally ON	Normally ON	Normally ON
	100%	Normally ON	Normally ON	Normally ON	Normally ON	Normally ON	Normally ON	Normally ON	Normally ON
Operation indicator lamp ●		Normally ON			Normally ON				

Note: the "flicker 2" means flicker once every 1s: On for 0.5s and Off for 0.5s

4) Description of indicator lamp in program upgrading mode

Status	RUN	ALM	CHG	DCHG •	SOC LED indicator			
Program	Flicker	Flicker	Flicker	Flicker	Flicker	Flicker	Flicker	Flicker
upgrading	2	2	2	2	2	2	2	2

Note: the "flicker 2" means flicker once every 1s: On for 0.5s and Off for 0.5s

5) Description of LED flicker

Flicker mode	ON	OFF	Remark
Flicker 1	0.25S	3.75S	Flicker once every 4s
Flicker 2	0.5S	0.5S	Flicker once every 1s
Flicker 3	0.5S	1.5S	Flicker once every 2s

Note: when the module is powered on, constant current charging state is indicated by default, and the

CHG is normally ON

(4) Description of side panel

Fig. 3.7.2.9 Description of left side panel for PDU-GU-F

Identification	Remark
PUSE	Fuse of distribution box
ON/OFF	Switch of distribution box
SWITCH	Switch used to connect or disconnect the inverter with the distribution box

Fig.3.7.2.10 Description of right side panel for PDU-GU F

Identification	Note
	Parallel input/distribution box connection interface, which can be used
PARALLEL IN	as a network port for communication/ a connection port for 120 Ω
	terminal resistance
	Parallel output/ distribution box connection interface, which can be
PARALLEL OUT	used as a network port for communication/ a connection port for
	120Ω terminal resistance
BAT+	Battery parallel/ input/ output
BAT-	Battery parallel/ input/ output
PCS	Communication port for inverter and distribution box
NET	Network communication port for distribution box

3.7.3 Battery (EHBS-P5-TH)

1. Appearance and dimensions of battery

Dimensions: 650mm*270mm*370mm

Fig. 3.7.3.1 Appearance of EHBS-P5-TH

2. Description of top ports for EHBS-P5-TH

Fig. 3.7.3.2 Top ports for EHBS-P5-TH

3. Description of bottom ports for EHBS-P5-TH

Fig. 3.7.3.3 Bottom ports for EHBS-P5-TH

3.7.4 Base support

1. Appearance and dimensions of abutment

Dimensions: 650mm*270mm*50mm

Fig. 3.7.4.1 Abutment appearance

2. Top ports on abutment

Fig. 3.7.4.2 Top ports of abutment

4 Storage and inspection of inverter

Warning

If the inverter is not put into use immediately, store the inverter according to the following requirements:

- 1. Ensure that the outer packing box is not removed.
- Ensure that the storage environment is clean and non-condensing, and has appropriate temperature (-25°C to +60°C).
- 3. Ensure that the inverters are stored according to the stacking height and direction specified in the label on the packing box.
- 4. Ensure that there is no toppling or falling risk after the inverters are stacked.
- 5. If the inverter is stored for a long period, the inverter should be checked by the professional personnel before use.

4.1 Inspection before acceptance

Before acceptance, check the inverter as described below:

- Check the outer package for damage, such as distortion, holes, cracks or other signs that may cause damage to the inverter. If the outer package is damaged, do not open the package and contact the distributor.
- Check whether the inverter model is correct, if not, do not open the package and contact the distributor.
- 3. Check the inverter for correct type and quantity and appearance damage. In case of damage, contact the distributor.

4.2 Packing list of inverter

No.	Name	Specification	Quantity	Picture
1	Household supply power	Inverter	1	
2	Wall fastener and hanging board assembly	Hanging board: 510*125*63mm (W*H*D) Wall fastener: 144*60*30mm (W*H*D)	1	1
3	Angle iron	L98*75*35mm	1	
4	COM connector	16-pin connector plug,5A MAX,300VDC,1500VAC	1	STATE .

5	LOAD connector	Connector with 5-pin RBH100-32-5P-W-M-26-BK male plug on cable end, 32A	1	
6	GEN connector	Connector RBH100-32-5P-W-M-26-BK female plug on cable end, 32A	1	
7	PV connector (male)	PV connector with CT75A-1T- 07 male plug on cable end and metal terminals	3	
8	PV connector (female)	PV connector with CT75A-1T- 07 female plug on cable end and metal terminals	3	ja ja
9	GRID connector	Connector with 5-pin 5PCM male plug on cable end	1	
10	Removing tool	Removing tool, RBH100-32- 5P-W-TL connector removing tool	1	30 Ver
11	RJ45	Connector, waterproof RJ45 connector plug,YGC583- RJ45PA	3	
12	Wi-Fi stick	Communication equipment, WiFi data acquisition stick, IP66-12V	1	
13	User manual	User manual for EAHI10~ 20KTH-S	1	
14	ст	CT: Yada CTF16LA-4k-100	1	
15	Kilowatt-hour meter (Optional)	Kilowatt-hour meter: Yada DTSD3366M-4-W1-A	1	
-				
----	---	--	----	------
16	* M6 20 cross outer hexagon double cushioned screws	Cross outer hexagon double cushioned screws, M6× 20,	4	
17	* M4 10 cross outer hexagon double cushioned screws	Cross outer hexagon double cushioned screws, M4× 10	4	
18	* M6 12 cross outer hexagon double cushioned screws	Cross outer hexagon double cushioned screws, M6* 12	1	
19	M6*70 expansion screw	Expansion screw, M6*70 x 5 per set, 304 stainless steel, natural color	4	
20	RNB5.5-6 end soldering terminal	End soldering terminal, RNB5.5-6, 48A, Φ =6.5Mm, 5.6×23mm	1	9
21	Kilowatt-hour meter guide rail (Optional)	Fixed energy meter (energy meter accessories)	1	
22	Кеу	Key of side wiring door	3	Ċ
23	Tube type pre- insulated end	Preinsulated tube end, E6012(10 AWg-6 mm ²), red	15	0)))

4.3 Packing list of EHBS-P5-TH household energy storage battery

No.	Name	Specification	Quantity	Picture
1	Battery	EHBS-P5-TH energy storage battery	1	
2	Angle iron fixing screw	Cross outer hexagon double cushioned screws, M4*10mm	4	

4.4 Packing list of PDU-GU-Y /PDU-GU-F

No.	Name	Specification	Quantity	Picture
1	Base	650*270*50mm	1	

2	Integrated distribution box (PDU-GU-Y) Split distribution box (PDU-GU-F)	PDU-GU-Y (integrated) distribution box: 650*150*270mm PDU-GU- F (split) distribution box: 650*150*270mm	1	
3	Earthing angle iron	97*70*30mm	2	a f
4	Case connecting part	60*25*2mm	8	
5	Wall angle iron	65*60*30mm	2	a start
6	Adjustable foot support	M12*82mm	4	
7	Cross outer hexagon	Cross outer hexagon double cushioned screws, M4*10mm	4	
8	Flange nut	M6, material SUS304	4	
9	Expansion bolt	M6*70, material SUS304	4	
10	Matched resistance	RJ45 short circuit registered jack, 8P8C+ iron housing 5C-120 Ohm resistance -8C black PVC	2	
11	Parallel power line DC+	CT75-07A-1T, orange color,2.5m	1	Q
12	Parallel power line DC-	CT75A-1T-06, orange color,2.5m	1	Q
13	Parallel communication line	2.5m	1	0

5 Installation

5.1 Installation preparation

5.1.1 Installation environment requirements

- ➤ The ambient temperature should be between -25℃ and +60℃, and the relative humidity should be between 0% and 90% (no condensation).
- The inverter may be installed indoor or outdoor, provided that the installation location is dry, dustless, well-ventilated, and kept away from direct sunlight or heating equipment.
- > As the inverter will produce noise, install the inverter away from the rest area.
- Install the inverter on a firm surface and ensure that installation location and method support the weight and dimension of the inverter and the battery.
- > The installation altitude of the inverter is lower than the maximum working altitude 3000m.
- > Keep away from strong magnetic fields to avoid electromagnetic interference.

If a radio station or a wireless communication device below 30MHz is located near the installation location, install the device according to the following requirements:

- Install a ferrite core with multi-turn winding, or a low pass EMI filter for the DC input cable or AC output cable of the inverter;
- 2. Maritain more than 30m distance between the inverter and the wireless electromagnetic interference equipment.

Install the inverter at -25 to +60°C and 0%-90% relative humidity (no condensation). The inverter may be installed outside away from direct sunlight.

Do not install the inverter in a location which may be exposed to moisture, floor and lightning stroke.

Self-cooling heat dissipation mode is used for the inverter. In order to ensure a good heat dissipation effect, install the inverter in wellventilated environment.

Install the inverter on solid ground. The wall is vertical to the ground.

Туре	Tools and description					
	Electric drill with M6 bit	Spirit level	I Marker	Ruler		
Installation	Hammer	Phillips screwdriver PH1	Diagonal pliers	Stripping pliers		
	Utility knife	Crimping pliers	Network cable crimping pliers	Open-end wrench S=7mm		
Safety protection tool	Safety gloves	Dust mask	Goggles			

5.1.2 Requirements of installation tools

5.1.3 Selection of installation location

The installation location should be flat and solid and can support the weight of the whole system.

Vertically install and avoid tilting forward or backward:

The space around the power supply should meet the following requirement as a minimum:

5.2 System installation

5.2.1 Handling of inverter and battery

Caution

- During transport, handling, installation and other operations, it is necessary to comply with national and local laws and regulations and relevant standards of the installation site.
- Before installation, move the inverter to the installation location. During handling, pay attention to the following to avoid personal injury or equipment damage:
 - 1. Please assign personnel based on the weight of the inverter to ensure it remains with in safe carrying limits, preventing any risk of injury.
 - 2. Wear appropriate protective equipment to avoid the relevant injury.
 - 3. Ensure that the inverter keeps balance to avoid falling during handling.

5.2.2 System installation

Attention

During installation, ensure that the installation of devices in the system does not affect the disconnection of the DC switch and the AC circuit breaker.

- During drilling holes, ensure that the holes are drilled away from water pipes and cables in the wall, which can avoid dangers.
- During drilling the holes, wear safety goggles and dust mask to protect respiratory tract or eyes against dust.
- Ensure that the ground can support the weight of the system.
- Ensure that the inverter and the battery are securely installed to avoid falling during handling.

Installation procedure:

5.2.2.1 Base support installation

Tools: Ruler

Select a clean and stable wall to install the the abutment

Before installation, please use the ruler to measure the distance between the wall to the

abutment, which should be 60mm. After determining the position, put the abutment down steadily.

5.2.2.2 Battery installation

Tools: Ruler, screwdriver, screws (M4* 10mm) and case connector

1. Cell installation

Step 3:

Install the case connector, adjust the location of the case connector between the battery and the case connector, and fix the case connector by the screws.

2. Installation of battery pack

Generally, it is recommended that the battery pack is installed by stacking 3-4 cells. When the installation space permits, the battery pack can be installed by stacking 4 cells. When at most 4 cells are stacked, 4 cells can not be installed due to limited installation space or other reasons, install the battery pack in the cell stacking mode of 2+2 or 3+1 and connect the battery pack by a connecting cable. See 3.2 Recommended Configuration Scheme for details. The stacking method is hereinafter described by exampling installation of the battery pack by stacking 4 cells.

Align and gently place the second cell with and onto the slot of the first cell and check that two cells fit closely.

5.2.2.3 Installation of distribution box

1. Installation of single distribution box

Step 1: stack the distribution box	Step 2: install case connecting part
Align and gently place the distribution box with	Fix the cell with the distribution box connecting
and onto the slot and check that they fit closely.	part according to the step of installing the case
	connecting part provided in Section 5.2.2.2

Note: the same method is used to install the integrated and split distribution boxes

2. Connect the distribution box for the battery packs.

To connect more than 2 battery packs, connect the distribution boxes according to the following method:

Tools: Screwdriver and screws (M4* 10mm)

If required, connect more than 2 distribution boxes by the following steps:

- Connect two power cables of the ports BAT+ and BAT- of the main distribution box with two two corresponding power cables of the ports BAT+ and BAT- of the secondary distribution box 1;
- (2) Connect the port PARALLEL OUT the main distribution box port with the port PARALLEL IN of the secondary distribution box 1;
- (3) If three distribution boxes are required, connect the distribution box 1 with the ports BAT+ and BAT- of the distribution box 2 according to Step (1), connect the port PARALLEL OUT of distribution box 1 with the port PARALLEL IN of the distribution box 2. Connect more distribution boxes in the same method.

System connection diagram:

5.2.2.4 Installation of power supply

Tools: ruler, cross screwdriver, impact drill (8mm bit), open-end wrench (10mm) Accessories: hanging plate, wall-mounted plate, fixing Angle iron, M6X20 combination screw (stainless steel), M4X10 combination screw (stainless steel)

1. Installation of single power supply

Install the hanging plate onto the power supply by M6X20 screws, stack the power supply on the distribution box by aligning with the hanging plate, connect the power supply with the distribution box by the angle iron, and fix the angle iron by M4X10 screws to complete the stacking of the battery.

2. Installation of multiple power supplies

EAHI10 - 20KTH-S series inverters have parallel connection function, and a system can connect up to 6 inverters. In the system, set one inverter as a "main inverter" for the energy management and scheduling control of other inverters. Connect all secondary inverters in parallel, and connect them with the "main inverter" by the network cable for communication with the main inverter". Connect the main inverter with the secondary inverters by the ports PARALLEL IN and PARALLEL OUT of the inverters. Requirements of parallel connection:

- > The version of all inverters is same.
- > The power range of all inverters is same.
- The port PARALLEL OUT of the main inverter is connected with the port PARALLEL IN of the secondary inverter 1;

The port PARALLEL OUT of the secondary inverter 1 is connected to the port PARALLEL IN of the secondary inverter 2, and so on. Up to 6 inverters are connected in parallel.

Net structure:

6 Electrical connection

Attention

- Before the installation and use of the inverter, a cable (4 ~ 6 mm²) with wire lugs must be used for special protective earthing.
- 2. The BACK- UP output end of the inverter has the following carrying capability:
- Inductive load (such as air conditioners, washing machines and motors), with the maximum power 20KVA for the total inductive load.
- ② Capacitive load (such as computers, switching power supplies, etc.), with the maximum power 20KVA for the total capacitive load.
- For the above carrying capacity, it is required to connect the system with the grid or provide the batteries with sufficient capacity. If the energy is provided by only the PV, the maximum single offgrid load should be generally less than 2KW.

No.	Component	Note
1	PV string	The PV string is made by connecting multiple PV modules in series
2	Inverter	Support EAHI10KTH- S, EAHI15KTH- S and EAHI20KTH- S inverters
2	ON-GRID Load	The specifications should be determined according to the actual load.
3	circuit breaker	You are recommended to prepare the AC switches by yourselves.
		You are recommended to prepare the AC circuit breaker.
	ON- GRID circuit	Recommended specifications:
4	breaker	 EAHI10KTH-S: rated voltage ≥400V, rated current ≥20A
	Dieakei	 EAHI15KTH-S: rated voltage ≥400V, rated current ≥30A
		 EAHI20KTH-S: rated voltage ≥400V, rated current ≥40A
	Kilowatt-bour	Delivered together with the inverter, or purchased from the inverter
5	meter/ CT	manufacturer, recommended model:
5	(optional)	Kilowatt-hour meter: Yada DTSD3366M-4-W1-A;
	(optional)	CT: Yada CTF16LA-4k-100.
		Support connection with the backup loads, such as loads requiring
	BACK-UP Load	24-hour power supply or other critical loads;
6		Support unbalanced loads, such as: L1, L2, L3 respectively
0		connected to the loads with different powers;
		The BACK-UP port does not support connection with auto-
		transformers or isolation transformers.
	BACK- UP load circuit breaker	You are recommended to respectively buy the AC circuit breaker.
		Recommended specifications:
7		 EAHI10KTH-S: rated voltage ≥400V, rated current ≥20A
		 EAHI15KTH-S: rated voltage ≥400V, rated current ≥30A
		 EAHI20KTH-S: rated voltage ≥400V, rated current ≥40A
		To ensure that the BACK- LIP port can continue to work when the
		inverter is powered off for maintenance, it is advised to install a
	Single-pole	single-pole double-throw switch
		Specification of single-pole double-throw switch
8	double-throw	 FAHI10KTH-S' rated voltage ≥400V rated current ≥20A
	switch	EAHI15KTH-S: rated voltage ≥400V rated current ≥30A
		EAHI20KTH-S: rated voltage ≥400V rated current ≥40A
		Battery used with inverter (up to 4 cells)
9	Battery	• EHBS-P5-TH: 5kWh, rated voltage 750V
	Integrated	
10	Distribution Box	PDU-GU-Y

Recommended cables:

Attention

When external cables are selected, it is required to consider current size, system overload capacity, and ambient temperature. The following table provides the recommendation to select the cables. Engineers should select the cables according to the local standards and the following table. The cable length is generally 2-10m, and if the cable is too long, it is possible to cause the deviation of the voltage from the rated value, in this case, the cable section size should be increased correspondingly.

No.	Name	Туре	Cross-sectional area of conductor
1	AC output cable	Outdoor copper-core cable	6mm²
2	PV DC input cable	Industrial general outdoor PV cable	4-6mm ²
3	Battery cable	1	Stacked installation, and no additional cable required

- 1. An insulation terminal (provided with the accessories) should be installed for grid input, AC load output, PV input and battery input cables and the power supply.
- The terminals are securely fixed by pincers and other tools to ensure more secure and more stable wiring of the system.
- 3. All cables are routed through the back of the door to avoid security risks.

6.1 Connection of ground wire

Tools: Screwdriver, ground wire screw (φ6mm), wire stripper, ground wire end soldering terminal, crimping pliers, measuring tape, ground wire.

6.2 PV side connection

ground cable with a ground impedance of no more

Danger

Make sure that:

than 0.1Ω .

- Do not connect the PV string on same circuit to multiple inverters. Otherwise, the inverters may be damaged.
- Before connecting the PV string to the inverter, confirm the following information. Otherwise, the inverter may be permanently damaged, or a fire may occur, causing personal injury and property losses.
- Ensure that the maximum short-circuit current and maximum input voltage of each MPPT are within the allowable range of the inverter.
- Ensure that the positive terminal of the PV string is connected to the PV+ of the inverter, and the negative terminal of the PV string is connected to the PV- of the inverter.

Procedure:

- 1. Disconnect all circuit breakers.
- Check the positive and negative polarity of the PV array. Ensure that the maximum operating
 voltage of the EAH I 10-20KTH-S inverter does not exceed 1000V (according to the local minimum
 temperature, determine the number of components, and ensure that the maximum open circuit
 voltage of the components does not exceed 1000V maximum allowable operating voltage of the
 inverter).
- Determine the polarity of the PV input side of the inverter.
 Polarity of the PV input side of the inverter:

Polarity of input terminal of external input cable

Wiring of DC side

 Strip the about 8mm cable sheath of the DC cable to expose the copper conductor. Insert the copper conductor into the metal core of the connector and tighten it with the crimping pliers (as shown in the following figure)

 Loosen the terminal cover and pass the cable through the terminal cover. Insert the mold into the wiring slot until sound is given to indicate the connection in place. Tighten the terminal cover (as shown in the following figure).

- 3. Use a voltmeter with measuring range of greater than 1000V DC voltage to check whether the connection polarity of the PV array cable is correct, and confirm that the operating voltage is within the specification scope.
- Disconnect the circuit breaker on the DC side, and connect the PV input cable to the inverter separately.

6.3 AC side connection

Warning

- Before connecting to the grid, install an AC circuit breaker between the inverter and the grid as well as the BACK- UP.
- During wiring, the AC cable fully matches with the ports "L1", "L2", "L3", "N" and "PE" of the AC terminal. If the cable is incorrectly connected, the inverter may be damaged.
- Ensure that the cable core is fully connected to the wiring terminal hole and is not exposed.
- Ensure that the cables are securely connected; otherwise, it is possible to damage the inverter due terminal overheating during operation.
- According to the regulatory requirement of different regions, the N and PE cables of the ON-GRID and BACK-UP ports of the inverters are connected in different methods, and the specific connection method is determined according to the local regulations.
- The ON- GRID and BACK-UP AC ports of the inverter have built-in relays. When the inverter is in the off-grid mode, the built-in ON GRID relay is in the opened status. When the inverter is in the grid-tied mode, the built-in ON GRID relay is in the closed state.
- After the inverter is powered on, the BACK-UP AC port carries current. If the BACK-UP load is maintained, power off the inverter, otherwise, it is possible to cause electric shock.
- > Do not connect any load between the inverter and the AC circuit breaker.
- The grid voltage must be within the allowable range, the inverter provides rated voltage 380Vac/400Vac and frequency 50/60Hz, and other technical requirements must meet the local grid safety requirement.

Attention

During wiring, a continuity test should be performed to ensure that the terminals are properly connected with the cables.

6.3.1 LOAD side connection

Tools: Hexagonal screwdriver (φ2mm), Tube type pre-insulated ends (5 PCS), wire stripper, measuring tape, cables L1 (red), L2 (red), L3 (red), N (black) and PE (yellow-green), M2.5 cross wrench.

Measure the distance between the distribution box or load and the inverter by the measuring tape and select the ground cable with appropriate length. Strip 70mm cable sheath and 15mm insulation layer of the cable by the wire stripper.

Use the terminal crimping pliers to press the pre-insulated end of the tube to the cable.

Terminal installation procedure

Install the cables to connectors (confirm the cable sequence)

Crimp the cables, and tighten the screws at torque 0.8+/-0.1N·m

6.3.2 GEN side connection

For details about how to install and remove GEN connectors, see 6.3.1 Installing and Removing Procedure for LOAD Connectors.

6.3.3 Grid side connection

Tools: Hexagonal screwdriver (φ 2mm), Tube type pre-insulated ends (5 PCS), wire stripper, tape and cables (L1, L2, L3, N and PE)

6.3.4 Connecting N and PE cables in distribution box

1. Connecting N and PE cables together in distribution box

According to the safety regulation of Australia, the neutral cables on the ON-GRID side and the BACK- UP side must be connected together. Otherwise, the BACK- UP may not work properly. See the following future for an example application of connecting the N and PE cables together in the distribution box.

• During use in Australia, New Zealand and South Africa, please follow local wiring regulations.

No.	Note
1)	50A/380V/400V AC circuit breaker
2	50A/380V/400V AC circuit breaker
3	Depend on the load
4	Depend on the household load and the inverter capacity
5	30mA RCD (subject to local regulations)
6	30mA RCD (subject to local regulations)

Note 1: If the battery is internally integrated with a DC circuit breaker that is easily accessible, no additional DC circuit breaker is required.

Note 2: The values recommended in the table are for reference only. The actual value should be subject to the local standards and actual conditions.

Note 3: it is recommended that the rated current of circuit breaker ① is lower than the rated current of circuit breaker ④.

Note 4: When the rated current of the used cable is lower than the recommended current, priority is given to the circuit breaker with the specifications matching with the cables.

Note 5: The AC port obtains the power from the grid and is set according to the air switch of the grid.

2. Connecting N and PE cables respectively in distribution box

Ensure that the protective ground cable of BACK-UP is connected properly and securely. Otherwise, the BACK-UP function may be abnormal in case of a grid fault.

The following wiring method may be used in those other than Australia and New Zealand.

No.	Note
1	50A/380V/400V AC circuit breaker
2	50A/380V/400V AC circuit breaker
3	Depend on the load
4	Depend on the household load and the inverter capacity
5	300mA RCD (recommended)
6	30mA RCD (recommended)

- Note 1: If the battery is internally integrated with a DC circuit breaker that is easily accessible, no additional DC circuit breaker is required.
- Note 2: The values recommended in the table are for reference only. The actual value should be subject to the local standards and actual conditions.
- Note 3: it is recommended that the rated current of circuit breaker is lower than the rated current of circuit breaker.
- Note 4: When the rated current of the used cable is lower than the recommended current, priority is given to the circuit breaker with the specifications matching with the cables.
- Note 5: The AC port obtains the power from the grid and is set according to the air switch of the grid.

6.4 Connection of kilowatt-hour meter

Tools: Screwdriver (small cross), network cable, network cable pliers, wire strippers, tape measure, kilowatt-hour meter sliding rail, marker, hammer, electric drill and expansion screw.

Caution

Before connecting the smart kilowatt-hour meter to the CT, ensure that the AC cable is completely disconnected from the AC power supply.

6.4.1 CT connection mode (standard configuration)

Connect the	register	CT red jack	23456 /ME	ν 78 ΓER T to the	CT/ME	© 2	3 4 5 0 7 8 2 3	busing
Description	of CT/M	ETER p	ins					
Pin	1	2	3	4	5	6	7	8
Definition	EXT- CT1- AP	EXT- CT1- AN	EXT- CT1- BP	EXT- CT1- BN	EXT- CT1- CP	EXT- CT1- CN	RS485_METER_A	RS485_METER_B

Attention

Please note that the CT orientation must be correct, otherwise the system will not work properly.

6.4.2 Connection mode of kilowatt-hour meter (optional)

1. Install the kilowatt-hour meter

electric drill, and insert the expansion screws into the holes.

Install the kilowatt-hour meter on the guide rail.

As shown in the figure, strip the cable sheath of the network cable by the cable stripper, pass the network cable through the components in the sequence shown in the figure, and crimp the cable into the RJ45 registered jack according to the sequence 1-8 and the cable colors. Strip 10mm insulation layer from another end of the network cables 7# (brown and white) and 8# (brown). Connect the network cable 7# (brown and white) with the RS485A port of the kilowatt-hour meter, and the network cable 8# (brown) with the RS485B port of the kilowatt-hour meter.

Connect the cables L1/L2/L3 / N of the grid circuit breaker to Ua/Ub/Uc/Un of the INPUT of the DTSD33666-4-W1-A kilowatt-hour meter. (In this case, you can close the grid circuit breaker to power on and configure the the kilowatt-hour meter. For details, see the kilowatt-hour meter configuration. After the kilowatt-hour meter is configured, disconnect the grid circuit breaker and continue to operate.). Check whether the cables L 1/ 2/ 3/N are securely connected.

2. Kilowatt-hour meter configuration

DTSD3366M-4-W1-A

Press the "SET" button on the kilowatt-hour meter to access the setting interface;

In the parameter interface, press the "▲" and "▼" buttons on the kilowatt-hour meter to adjust and change the parameter; press "SET" to confirm the adjustment and change;

Change from the parameter interface to " " Change from the parameter interface to "

Press SET to return to the home page.

Password interface: 3366

Press the "SET" button to access the password setting interface;

Press "▲" to adjust the number size, press "▼" to switch the digits, and set the PSD password to 3366:

Press the "SET" button to access the parameter setting interface.

Modbus address setting: 003

On the parameters interface, press "▲" and "▼" to switch to"

Press"SET" to access Modbus address setting;

Press "▲" to adjust the number size, press "▼" to switch the digits, and set the communication address to "003":

Press the "SET" button to return to the parameter setting interface.

Meter number/ equipment address: L 000003 / H 000000

On the parameters interface, press "▲" and "▼" to switch to"

Press"SET"button to access meter number / equipment address setting;

Press "▲" to adjust the number size, press "▼" to switch the digits, and set the communication address to "L 000003":

Press the "SET" button to access the next setting"H 000000";

Press the "SET" button to return to the parameter setting interface.

Communication baud rate and check bit setting: 4800 n

On the parameters interface, press " \blacktriangle " and " \blacktriangledown " to switch to "**bd** SEE •;

Press "SET" button to access the communication baud rate and check bit setting;

Press "▲, ▼" to switch the digits and set the baud rate and check bit to "4800 n";

Press the "SET" button to return to the parameter setting interface.

Wiring mode : default value, no C setting required c	Current transformation ratio • CL SEL · : default value, no setting required		
Clock setting required control	Voltage transformation ratio		

Attention

If the kilowatt-hour meter stops for more than 1 month after disconnection of the power supply, verify that the parameters of the kilowatt-hour meter are correct

During use, grid voltage, current frequency, and other grid information of the system may be viewed through the kilowatt-hour meter. During viewing, press the buttons " \blacktriangle " and" \blacktriangledown " to switch the display interface of the kilowatt-hour meter. See the user manual of kilowatt-hour meter for the display interface details.

6.5 Communication side connection

The inverter is equipped with COM, USB, DRM, PARALLEL_IN and PARALLEL_OUT interfaces, as well as a WIFI/GPRS remote monitoring communication interface to upload the data to the cloud for data monitoring. The USB interface is used to upgrade software on a USB flash disk.

6.5.1 WIFI remote monitoring module

Fig. 6.5.1.1

Pin definition

Pin	Description	Network name	Туре	Description
1	Power ground	GND_COM	GND	GND
2	Data	RS485_GPRS_A1	I/O	RS485_A cable
	communication			
3	Data	RS485_GPRS_B1	I/O	RS485_B cable
	communication			
4	Supply power	+12V_COM	POWER	External supply power

To use this port, simply insert the GPRS/ WIFI module (optional) into the guide slot along the connector and tighten the fastening can counterclockwice

connector and tighten the fastening cap counterclockwise.

Fig. 6.5.1.2

After the collector is installed, download the APP for registration and binding (see the WiFi manual for details).
6.5.2 DRM communication

DRM

Fig. 6.5.2.1 Schematic diagram of LAN interface connection

DRM: Use according to safety regulations (Australia only):

Pin	1	2	3	4	5	6	7	8
Definition	DRM1/5	DRM2/6	NC	NC	DRM4/8	REF_GEN/0	COM_LOAD/0	DRM3/7

The inverters are equipped with the interfaces used for connection with the demand response enabled device (DRED). DRED asserts the demand response mode (DRMS). The inverter detects and responds to all supported demand response commands within 2s. The following table lists the DRMS supported by the inverter.

Mode	Note
DRM0	The inverter is in the Off status.
DRM1	The input power from the grid is 0.
DRM2	The input power from the grid shall not exceed 50% of the rated power.
DRM3	The input power from the grid shall not exceed 75% of the rated power.
	The input power from the grid shall be 100% of the rated power,but is subject to
DIVIN	other active DRMS.
DRM5	The grid input power is 0.
DRM6	The input power to the grid shall not exceed 50% of the rated power.
DRM7	The grid-tied power shall not exceed 75% of the rated power.
	The input power from the grid shall be100% of the rated power, but is subject to
	other active DRMS.

DRED can respond to multiple signal DRMS once time, and the following shows the priority order of responding to multiple DRMS.

Multiple modes	Priority order
DRM1DRM4	DRM1 > DRM2 > DRM3 > DRM4
DRM5DRM8	DRM5 > DRM6 > DRM7 > DRM8

DRM connection: Both DRM and Ripple Control support only one function.

In Australia and New Zealand, the inverters support the demand response mode specified in the AS/NZS 4777 standard, and the wiring diagram of the inverters is shown below:

Mode	Short connected inverter	External DRED operation
DRM0	R & C	Disable S1 andS5
DRM1	D1/5&C	Disable S1
DRM2	D2/6&C	Disable S2
DRM3	D3/7&C	Disable S3
DRM4	D4/8&C	Disable S4
DRM5	D1/5&R	Disable S5
DRM6	D2/6&R	Disable S6
DRM7	D3/7&R	Disable S7
DRM8	D4/8&R	Disable S8

Ripple Control: In Germany, the grid companies use a Ripple Control Receiver to convert grid dispatch signals into dry contact signals for transmission. The dry contact of the control receiver is wired as shown in the following figure:

On/Off: press On/Off to send on/off instructions to the inverter. In Australia and New Zealand, the Boot option will be disabled when the DRM status is DRM0.

Date setting/time setting: The correct system time is very important, the wrong system time will directly affect data recording and power generation value, the 24-hour system is used for the clock.

Software version: the information on current firmware version.

6.5.3 Communication for parallel operation

Fig. 6.5.3.1 Schematic diagram of LAN interface connection

Note: see Section 6.4.1 "Wiring Procedure of RJ45 Connector" for the specific wiring procedure.

PARALLEL IN and PARALLEL OUT communication interfaces are used for communication during the parallel operation. If the parallel operation is required, connect PARALLER_IN to PARALLEL_OUT of another inverter, and so on. Up to 6 inverters with same specification may be connected for parallel operation.

6.5.4 COM communication interface

Fig. 6.5.4.1 COM communication interface

No.	Definition	Description	
1	СОМ	COM dry contact (reconved)	
2	COM_ON	COW dry contact (reserved)	
3	COM_GEN_NC	CEN dry contact (reconved)	
4	COM_GEN	GEN ury contact (reserveu)	
5	RS485_GRRS_A2	RS485 and upper computer	
6	RS485_GRRS_B2	communication	
7	RS485_EV_A	DC495 charging station communication	
8	RS485_EV_B	RS485 charging station communication	
9	BAT_ON/OFF_1	Detter starting signal	
10	BAT_ON/OFF_2	ballery starting signal	
11	EXT-CT2_BN	Esternal OT communication (Dhase D)	
12	EXT-CT2_BP	External CT communication (Phase D)	
13	EXT-CT2_CP		
14	EXT-CT2_CN	External CT communication (Phase C)	
15	EXT-CT2_AN	Enternal OT communication (Discos A)	
16	EXT-CT2_AP	 External CT communication (Phase A) 	

7 Display panel

LED light bars are used for the display panel.

7.1 Description of signal indicator lamp

lcon	Name	Function
((•	WIFI connection	WIFI module successfully connected: normally On in green.
*	Bluetooth connection	Bluetooth successfully connected: normally On in green.
\bigcirc	Upper computer	Upper computer successfully connected: normally On in green.

7.2 Definition of LED status display

LED display description:

1. The SOC of the battery is displayed by 33 LED indicator bars

2. When the SOC is less than 3% (including 0%), 1 LED indicator bar is displayed all the time;

3. When the SOC is more than 20%, the LED light is green.

4. When the SOC is less than 20%, the LED light is orange.

Charging status: the indicator bars are displayed by turns from top to bottom

Discharging status: the indicator bars are displayed by turns from bottom to top

Idle : when the SOC is greater than 20%, the SOC is displayed by the breathing lamp;

When the SOC is less than 20%, the LED light flashes every 2 seconds to indicate the SOC.

7.3 LED failure status

Steady yellow and red indicator bars indicate that an alarm or fault occurs on the equipment. In case of the fault, contact professional personnel in time.

When the indicator bars are steady blue, the equipment is being upgraded. In this case, wait until the upgrade is completed. If the upgrade is not completed for a long time, contact the professional personnel in time.

Level	Definition	Buzzer	Lamplight	Picture	Alarm signal recovery conditions
1	Emergency	Default: the buzzer keeps ringing	The LED indicator lamp is red and normally ON.		Remove the fault
2	Important	Quiet	The LED light flashes in red	• * 0	Remove the fault
3	Minor	Quiet	The LED indicator lamp is yellow and normally ON		Go out after 60S

Priority: Upgrade > Fault/Alarm > SOC Display. If the alarm indicator works, the SOC is not displayed. If the alarm indicator is off, the SOC is displayed. The indicatorindicating the upgrade status is continuously on during the upgrade, and goes out after the upgrade is completed, and the current alarm and SOC are displayed according to the display logic

In case of multiple alarms, the sequence should be the upgrade status > Fault >Level 1 alarm > Level 2 alarm (see fault list for fault level)

8 Commissioning

8.1 Inspection before operation

Please check the following items before the operation.

- 1. The inverter is securely fixed.
- 2. The PV+/PV- cable is firmly connected with correct polarity, and the voltage is within the required range.
- 3. The BAT+/BAT- cable is firmly connected with correct polarity, and the voltage is within the required range.
- 4. The DC switch is properly connected between the battery and the inverter, and the DC switch has been disconnected.
- 5. The grid / load cable is firmly connected with correct polarity, and the voltage is within the required range.
- 6. The AC circuit breaker is correctly connected between the inverter grid port and the grid, and the circuit breaker has been disconnected.
- 7. The AC circuit breaker is correctly connected between the inverter load port and the emergency load, and the circuit breaker has been disconnected.
- 8. The communication cable is connected properly and firmly.

8.2 Powering on for the first time

If the above items meet the requirements, power on the inverter for first time according to the following procedure.

Step 1: Close the DC switch on the inverter.

Step 2: Close the AC circuit breaker between the inverter and the grid.

Step 3: Turn on the upper computer or APP to confirm the inverter status.

If no alarm is generated, the inverter is turned on normally.

If an alarm is given, remove the fault according to 11.2 Troubleshooting.

9 Use of APP for EAHI20KTH-S

9.1 Download and Installation of APP

Scan the following QR code with your mobile:

Android

IOS

If the above items meet the requirements, power on the inverter for the first time according to the following procedure.

Electricity price setting	3	Electricity price setting
Control setting	х.	% Control setting
(2) Mode switching	>	Mode switching
E Functions setting	s 🔶	E Functions setting
📤 OTA Upgrade		OTA Upgrade
(a)	8	<u>م</u> ۹
Home Config	R)	Home Coolig Me
Click 'Config' afte	r returning	Iclick on "Control Se
Click 'Config' afte	r returning	Click on "Control Set
Click 'Config' afte	r returning	Click on "Control Set Control Setting Control Setting Device startup
Click 'Config' afte	r returning	Click on "Control Set
Click 'Config' afte	r returning	Click on "Control Set
Click 'Config' afte	r returning	Click on "Control Set
Click 'Config' afte	r returning	Click on "Control Set
Click 'Config' afte	r returning	Click on "Control Set
Click 'Config' afte	r returning	Click on "Control Sec Control Setting Control Setting Device shutdown Inverter restart Intelligent Microgrid Mode Anti-reflux enable
Click 'Config' afte	r returning	Click on "Control Set Control Setting Device startup Device startup Device startup Device startup Anti-reflux enable
Click 'Config' afte	r returning	Click on "Control Sec Control Setting Device startup Device startup Device shutdown Intelligent Microgrid Mode Anti-reflux erable
	Control setting Made switching Functions setting OTA Upgrade OTA Upgrade OTA Upgrade Code Code Code	Control setting

(Click on "Device startup"

Note: If the inverter can be automatically turned on in case of the operation as described in 8.2, it will not be required to start the inverter through connecting APP/ with the upper computer.

10 System maintenance

Attention

• Ensure that the inverter is powered off.

• During operating the inverter, please wear personal protective equipment.

10.1 Routine maintenance of inverter

Maintenance item	Maintenance method	Maintenance period
System	Check the cooling fin and the air inlet/outlet for	Once/half a year -
cleaning	foreign matter and dust.	once/a year
DC switch	Turn the DC switch on and off for 10 consecutive times to ensure that the DC switch functions	Once/a year
Electrical Connection	normally. Check the cable connection for any looseness or disconnection. Check whether the cables are damaged. Mainly check any cut sign on the cables touching the metal surface. Check the unused DC input terminals, AC input and output terminals, COM ports, and waterproof covers for locking condition.	Once/half a year - once/a year
Electrical Connection	Turn the DC switch on and off for 10 consecutive times to ensure that the DC switch functions normally.	Once/half a year - once/a year
Grounding reliability	Check whether the ground cable is properly connected with the ground.	Once/half a year - once/a year

10.2 Maintenance of inverter unused for long period

If the inverter is not used for more than 7 days, shut down the AC input, PV input, and battery input switches.

If the inverter has not been used for more than 3 months, turn on the AC input switch (or PV input switch) and the battery switch and start the system to charge the battery once.

10.3 Power off inverter

Danger

- Before maintaining, power off the inverter. The hot-line job may cause inverter damage or electric shocks.
- After the inverter is powered off, it takes some time for the internal components to discharge. Please wait according to the required time label till the inverter is fully discharged.

Step 1: Send a shutdown instruction through mobile APP or cloud platform or host computer

Step 2: disconnect the ON- GRID AC circuit breaker of the inverter

Step 3: disconnect the BACK- UP AC circuit breaker of the inverter

Step 4: disconnect the AC switch between the inverter and the battery

Step 5: disconnect the DC switch of the inverter

10.4 Battery maintenance

Warning

- The battery maintenance should be made or supervised by the personnel with battery knowledge and necessary preventive measures should be taken.
- The risk of electric shock or high short-circuit current may be caused by the battery.
- Do not place the battery into the fire, as battery overheating may cause an explosion.

As the released electrolytes are harmful to skin and eyes and may be toxic, do not open or destroy the battery

10.5 Battery safety

- 1. During installing or replacing the battery, do not wear watches and rings to avoid burning resulting from short-circuit.
- 2. Wear the safety goggles and the protective gloves.
- 3. Keep the work place away from open flame, hydrogen and smoke.
- 4. Check whether there is earthing cable at two electrodes of the battery. If yes, remove the earthing cable.

Environmental factors may affect battery life. The stored battery energy decreases with ambient temperature rise. Frequent short-time discharge may shorten the battery's life. The battery maintenance is very important, and the following inspection should be completed every month:

- > Keep the battery clean, and promptly clean the terminals and connectors.
- > Regularly clean the cables and check them for proper connection.
- Do not use different types and capacities of the batteries simultaneously, please use the same model of the batteries.

10.6 Battery storage and charging

Battery storage requirements:

- During storage, correctly place the battery in accordance with the mark on the packaging box, do not put upside down or tilt the battery.
- 2. If required, stack the battery packing boxes according to the stacking requirements on the outer packaging.
- 3. Handle the battery with care to avoid damage.

4. Storage environment requirements:

Ambient temperature: -10°C~55°C, recommended storage temperature: 20°C~30°C; relative humidity: 5%RH-80%RH

Dry, ventilated and clean.

Avoid contacting with corrosive organic solvents, gases and other substances.

Avoid exposing to direct sunlight

Maintain less than 2m away from heat sources

- 5. Warehouse manager should monthly check and record battery storage, regularly inform the battery inventory to the planning manager, and timely arrange the charging of the battery with storage time close to 15 months (-10°C -25°C), 9 months (25°C -35°C) or 6 months (35°C 55°C).
- 6. When the battery is ex-warehoused, the first-in-first-out principle should be followed.
- 7. After the battery production test is completed, charge the battery to at least 50% SOC before storage.

Judgment of storage exceeding time limit

In principle, it is not recommended to store the battery for a long time, and the battery should be used timely. The stored batteries should be treated according to the following requirements. Charging period of lithium battery

Storage temperature requirement	Actual storage temperature	Charging period	Note
	T <-10°C	Not allowed	During the period of
	-10°C <t≤25°c< td=""><td>15 months</td><td>supplementing electrical</td></t≤25°c<>	15 months	supplementing electrical
-10°C <t≤55°c< td=""><td>25°C<t≤35°c< td=""><td>9 months</td><td>energy:</td></t≤35°c<></td></t≤55°c<>	25°C <t≤35°c< td=""><td>9 months</td><td>energy:</td></t≤35°c<>	9 months	energy:
	35°C <t≤55°c< td=""><td>6 months</td><td>No need for handling, use</td></t≤55°c<>	6 months	No need for handling, use
	T>55℃	Not allowed	as soon as possible.

Inspection before battery charging

1. Inspect the battery appearance before the battery is charged, charge the qualified batteries only,

and scrap the unqualified batteries.

- 2. In case of the following conditions, the battery will be considered to be unqualified:
 - Battery deformation
 - Battery case damage
 - Electrolyte leakage

Description of battery charging scenario:

EAHI10-20TH-S can provide 10-20kW power to charge the battery and supports simultaneous charging of 12 battery packs.

11 Troubleshooting

11.1 Fault level list

Fault type	Fault name	Alarm level
	Failure in fast grid check	Prompt alarm
	Over-voltage of Phase A\B\C grid section 1	Prompt alarm
	Under-voltage of Phase A\B\C grid section 1	Prompt alarm
	Over-frequency of Phase A\B\C grid section 1	Prompt alarm
	Under-voltage of Phase A\B\C grid section 1	Prompt alarm
	Over-voltage of Phase A\B\C grid section 2	Prompt alarm
	Under-voltage of Phase A\B\C grid section 2	Prompt alarm
	Over-frequency of Phase A\B\C grid section 2	Prompt alarm
Grid failure	Under-frequency of Phase A\B\C grid section 2	Prompt alarm
	Over-voltage of Phase A\B\C grid section 3	Prompt alarm
	Under-voltage of Phase A\B\C grid section 3	Prompt alarm
	Over-frequency of Phase A\B\C grid section 3	Prompt alarm
	Under-frequency of Phase A\B\C grid section 3	Prompt alarm
	10min average grid over-voltage	Prompt alarm
	Island fault	Prompt alarm
	Zero ground voltage fault	Minor alarm
	Phase locking failed	Prompt alarm
	Phase A\B\C output RMS over-voltage	Important alarm
	Phase A\B\C output RMS under-voltage	Important alarm
Output failure	Phase A\B\C output RMS over-current	Important alarm
Output failure	Phase A\B\C output over-frequency	Important alarm
	Phase A\B\C output under-frequency	Important alarm
	DC component over-voltage of Phase A\B\C output	Important alarm
	Phase A\B\C inverter RMS over-voltage	Prompt alarm
	Phase A\B\C inverter RMS under-voltage	Prompt alarm
	Fast over-current of Phase A\B\C inverter	Important alarm
	Phase A\B\C inverter RMS over-current	Important alarm
	Wave-by-wave inductive current limit of Phase A\B\C	Drompt clarm
Inverter failure	inverter	Prompt alarm
	Shutdown due to inductive over-current of Phase	Important alarm
	A\B\C inverter	Important alarm
	DC component one-stage over-current of Phase A\B\C	Important alarm
	inverter	
	DC component two-stage over-current of Phase A\B\C inverter	Important alarm

	Inverter self-check failed	Important alarm
	Over-current of N-line balance bridge arm hardware	Prompt alarm
	Rapid over-current of N-line balance bridge arm	Prompt alarm
	Over-current of N-line balance bridge arm	Prompt alarm
	Fast BUS+ over-voltage	Important alarm
	Fast BUS- over-voltage	Important alarm
	BUS+over-voltage	Important alarm
	BUS- over-voltage	Important alarm
	Bus hardware over-voltage	Important alarm
Bus fault	Bus unbalance	Important alarm
	BUS+ under-voltage	Prompt alarm
	BUS- under-voltage	Prompt alarm
	Fast BUS+ under-voltage	Prompt alarm
	Fast BUS- under-voltage	Prompt alarm
	Bus short circuit	Emergency alarm
	Internal over-temperature of inverter	Important alarm
	PV over-temperature	Important alarm
	Inverter over-temperature	Important alarm
	Phase A\B\C grid relay fault	Important alarm
	Phase A\B\C inverter relay fault	Important alarm
	Phase A\B\C generator relay fault	Important alarm
	Insulation impedance to ground fault	Important alarm
	Leakage current out of limits at section 1	Important alarm
	Leakage current out of limits at section 2	Important alarm
	Leakage current out of limits at section 3	Important alarm
	Leakage current out of limits at section 4	Important alarm
	Monitor SCI communication fault	Prompt alarm
System fault	Bypass overload alarm	Prompt alarm
	Inverter overload alarm	Prompt alarm
	Short circuit of Phase A\B\C inverter	Emergency alarm
	Short circuit of Phase A\B\C bypass	Emergency alarm
	110% overload of Phase A\B\C inverter	Important alarm
	125% overload of Phase A\B\C inverter	Important alarm
	150% overload of Phase A\B\C inverter	Important alarm
	200% overload of Phase A\B\C inverter	Important alarm
	110% overload of Phase A\B\C bypass	Important alarm
	125% overload of Phase A\B\C bypass	Important alarm
	150% overload of Phase A\B\C bypass	Important alarm
	200% overload of Phase A\B\C bypass	Important alarm

	Fan 5# fault	Prompt alarm
	Reversed kilowatt-hour meter connection	Important alarm
	Kilowatt-hour meter communication fault	Important alarm
	Unmatched software and hardware versions	Important alarm
	Current country code unsupported	Important alarm
	SPIFlash fault	Important alarm
	Current model unsupported	Important alarm
	Not activated for Australia	Important alarm
	Repeated Parallel ID	Important alarm
	Fan 1# fault	Prompt alarm
	Fan 2# fault	Prompt alarm
	Fan 3# fault	Prompt alarm
	Fan 4# fault	Prompt alarm
	Fast PV1 over-current	Important alarm
	Fast PV2 over-current	Important alarm
	PV1 over-voltage	Important alarm
	PV2 over-voltage	Important alarm
	PV1 over-current	Important alarm
PV side fault	PV2 over-current	Important alarm
	PV hardware over-current	Important alarm
	Wave-by-wave inductive current limit of PV1	Prompt alarm
	Wave-by-wave inductive current limit of PV2	Prompt alarm
	No PV alarm	Prompt alarm
	Generator RMS over-voltage	Prompt alarm
	Generator RMS under-voltage	Prompt alarm
Generator fault	Generator over-frequency	Prompt alarm
	Generator under-frequency	Prompt alarm
	Failure in fast generator check	Prompt alarm
	BMU1 communication fault	Prompt alarm
	BMU2 communication fault	Prompt alarm
	BMU3 communication fault	Prompt alarm
	BMU4 communication fault	Prompt alarm
	BMU5 communication fault	Prompt alarm
Distribution box	BMU6 communication fault	Prompt alarm
alarm	BMU7 communication fault	Prompt alarm
	Main contactor closure fault	Important alarm
	Main contactor adhesion failure	Important alarm
	Bus over-voltage	Important alarm
	Bus under-voltage	Important alarm

	DC over-voltage	Important alarm
	DC under-voltage	Important alarm
	Battery over-current	Important alarm
	Pre-charging overtime	Important alarm
	BMS1 failure	Important alarm
	BMS2 failure	Important alarm
	BMS3 failure	Important alarm
	BMS4 failure	Important alarm
	BMS5 failure	Important alarm
	BMS6 failure	Important alarm
	BMS7 failure	Important alarm
	BMS8 failure	Important alarm
	BMS1 alarm	Prompt alarm
	BMS2 alarm	Prompt alarm
	BMS3 alarm	Prompt alarm
	BMS4 alarm	Prompt alarm
	BMS5 alarm	Prompt alarm
	BMS6 alarm	Prompt alarm
	BMS7 alarm	Prompt alarm
	BMS8 alarm	Prompt alarm
	System over-voltage alarm	Prompt alarm
	System under-voltage alarm	Prompt alarm
	Charge over-current alarm	Prompt alarm
	Discharge over-current alarm	Prompt alarm
	Charge over-temperature alarm	Prompt alarm
	Charge under-temperature alarm	Prompt alarm
	BMU communication failure alarm	Important alarm
	Discharge under-temperature	Prompt alarm
	BMS balance chip over-temperature alarm	Prompt alarm
Battery BMS alarm	Temperature unbalance alarm	Prompt alarm
	Cell unbalance alarm	Prompt alarm
	Cell over-voltage alarm	Prompt alarm
	Cell under-voltage alarm	Prompt alarm
	Discharge over-temperature alarm	Prompt alarm
	Discharge under-temperature alarm	Prompt alarm
	Ambient over-temperature	Important alarm
	Fan fault	Important alarm
	Input over-current	Important alarm
	Output over-current	Important alarm

	Output short circuit	Important alarm
	Low-temperature shutdown alarm	Prompt alarm
	Buck_Boost heat sink over-temperature	Important alarm
	LLC high-pressure side heat sink over-temperature	Important alarm
	LLC low-pressure side heat sink over-temperature	Important alarm
	Wave-by-wave current limiting fault	Important alarm
	Output over-voltage protection	Important alarm
	LLC high-pressure side heat sink over-voltage	Important alarm
	LLC high-pressure side heat sink over-current	Important alarm
	Module input over-voltage	Important alarm
	Internal module communication failure alarm	Important alarm
	Discharge output over-current	Important alarm
	Abnormal input connection alarm	Prompt alarm
	Abnormal SPIFlash	Important alarm
	Charging battery over-current	Important alarm
	Level 1 protection of system over-voltage	Important alarm
	Level 1 protection of system under-voltage	Important alarm
	Level 1 protection of charge over-current	Important alarm
	Level 1 protection of discharge over-current	Important alarm
	Level 1 protection of charge over-temperature	Important alarm
	Level 1 protection of charge under-temperature	Important alarm
	Level 1 protection of cell over-voltage	Important alarm
	Level 1 protection of cell under-voltage	Important alarm
	Level 1 protection of discharge over-temperature	Important alarm
BMS protection	Level 1 protection of discharge under-temperature	Important alarm
event	Level 2 protection of system over-voltage	Important alarm
	Level 2 protection of system under-voltage	Important alarm
	Level 2 protection of charge over-current	Important alarm
	Level 2 protection of discharge over-current	Important alarm
	Level 2 protection of charge over-temperature	Important alarm
	Level 2 protection of charge under-temperature	Important alarm
	Level 2 protection of cell over-voltage	Important alarm
	Level 2 protection of cell under-voltage	Important alarm
	Level 2 protection of discharge over-temperature	Important alarm
	Level 2 protection of discharge under-temperature	Important alarm

11.2 Troubleshooting

The users can troubleshoot and take corresponding measures according to the failure information of the inverter.

Fault information	Possible causes	Solution
Phase A\B\C grid RMS over-voltage Phase A\B\C grid RMS under-voltage Phase A\B\C grid over- frequency Phase A\B\C grid under- frequency	Grid fault	 Check the grid voltage or frequency, if the grid voltage or frequency is out of the allowable range of the inverter protection parameters, turn on the inverter after the grid is normal. If the grid voltage or frequency is within the allowable range, please contact your distributor or the after-sales service center.
Failure in fast grid check	The sudden change of external conditions causes failure in soft starting of the inverter.	 Wait for the inverter to recover automatically; Check the grid voltage or frequency, if the grid voltage or frequency is out of the range allowed by the inverter protection parameters, turn on the inverter after the grid is normal. If the grid voltage or frequency is within the allowable range, please contact your distributor or the after-sales service center. Check whether the AC circuit breaker of the
Island fault	An AC fault occurs on the grid, and the inverter detects the island by active means	grid is tripped and whether the cables are firmly connected;2. Check whether there is current on the grid.3. If the fault still cannot be removed after the first two steps, please contact your distributor or the after-sales service center.
Zero ground voltage fault	 The PE terminal on the AC terminal block and the secondary protection ground terminal at the bottom of the machine are not reliably connected; High voltage to ground on L and N cables of inverter 	 Check whether the inverter isreliably connected with the grounding cable; If the fault still cannot be removed in the case that the inverter isreliably connected with the grounding cable, please contact your distributor or the after-sales service center.

Output RMS over-voltage	The protection is	1.	. Check whether the external load and the
Output RMS under-voltage	triggered by the		grid are out of the range of inverter
Output RMS over-current	instantaneous abnormal		specification. After the fault is removed, the
Output over-frequency	output of the inverter		inverter will be automatically restored to
Output under-frequency	resulting from the sudden		normal operating status.
Inverter RMS over-voltage	change or short circuit of	2.	. If the alarm repeats, please contact your
Inverter RMS under-voltage	the external grid.		distributor or the after-sales service center.
	The protection is	1.	Check whether the external load and the
	triggered by the		grid are out of the range of the inverter
l	instantaneous abnormal		specification. After the fault is removed, the
Instantaneous over-current	output of the inverter		inverter is automatically restored to normal
of inverter	resulting from the sudden		operating status.
	change or short circuit of	2.	If the alarm repeats, contact your distributor
	the external grid.		or the after-sales service center.
Wave-by-wave inductive		1.	Check whether the external load is out of
current limit of inverter			the range of the inverter specification. After
	The output voltage of the		the fault is removed, the inverter is
Inverter shutdown due to	inverter is out of the		automatically restored to normal operating
inductive over-current	protection range.		status.
		2.	If the alarm repeats, contact your distributor
			or the after-sales service center.
Too high DC component of		1.	Wait for the inverter to recover
inverter voltage			automatically;
		2.	Check the grid voltage or frequency. If the
	The DC current		grid voltage or frequency is out of the
	component of the grid is		allowable range of the inverter protection
Too high DC component of	out of the allowable		parameters, please contact the grid
inverter current	range.		company;
		3.	. If the grid voltage or frequency is within the
			allowable range, please contact your
			distributor or the after-sales service center.
Inverter self-check failed	Inverter bridge damaged,	1.	. Wait for the inverter to recover
	or too high harmonics of		automatically;
Phase locking failed	grid, and no grid-tied	2.	. If the fault still cannot be removed, please
-	conditions		contact your distributor or the after-sales
			service center.
	I ne inverter temperature	1.	Check whether the heat sink temperature
Inverter over-temperature	is nigher than the	1	displayed on the LCD screen is too high,
	allowable upper limit.	1	and if yes, wait till it recovers;

		2. Check that the inverter is installed in well-
		ventilated environment;
		3. Check whether the inverter is exposed to
		direct sunlight, and if yes, install a
		sunshade.
		4, If the fault still cannot be removed after the
		first three steps, please contact your
		distributor or after-sales service center.
Inverter overload 110%		
fault		1. Check the output load and reduce the load
Inverter overload 125%	Output over-load	power;
fault	protection	2. If the fault still cannot be removed after the
Inverter overload 150%		first step, please contact your distributor or
fault		after-sales service center.
		1. Check the output load and reduce the load
		power;
Inverter overload 200%	Output over-load	2. If the fault still cannot be removed after the
fault	protection	first step, please contact your distributor or
		after-sales service center.
Fast bus over-voltage	The instantaneous bus	1. Wait for the inverter to recover after the bus
ŭ	voltage is higher than the	voltage is reduced;
Bus over-voltage	allowable upper limit of	2. If the fault repeats, please contact your
3	the inverter.	distributor or after-sales service center.
		1. Check whether the PV input voltage is out
	The hardware detects	of the allowable range of the protection
	that the instantaneous	parameters of inverter;
Bus hardware over-voltage	bus voltage is higher than	2. After the bus voltage is reduced, restart the
	the allowable upper limit	inverter:
	of the inverter.	3. If the fault repeats, contact your distributor
		or after-sales service center.
Bus under-voltage	The average bus voltage	
	is lower than the	1. Wait for the inverter to recover;
Fast bus under-voltage	allowable lower limit of	2. If the fault repeats, please contact your
	the inverter.	distributor or after-sales service center.
	The internal components	
	are damaged due to	Please contact your distributor or the after-
Bus short circuit	sudden change of	sales service
	external conditions.	
Grid relay fault		
Inverter relay fault		Restart the inverter;

	The valey can not be	If the clowe was at a contact the distributor or			
	The relay can not be	If the alarm repeats, contact the distributor or			
Generator relay fault	closed or disconnected	after-sales service center.			
	properly.				
Monitor SCI communication	No monitoring data	1. Restart the inverter;			
foult		2. If the fault repeats, contact your distributor			
lauit	received	or after-sales service center.			
Bypass overload 110%					
fault					
Bypass overload 125%		1. Check the output load and reduce the load power;			
fault	Output over-load				
Bypass overload 150%	protection during change	2. If the fault still cannot be removed, please			
fault	from off-grid to grid-tied	contact your distributor or the after-sales			
Bypage everleged 200%		service center.			
Superson Strength					
fault					
Fast PV1 over-voltage		1. Check whether the PV input terminal is			
		normal;			
	The P\/1 or P\/2 voltage	2. Check whether the PV input configuration			
	is higher than the bus voltage.	is out of the allowable range of the			
Fast PV2 over-voltage		protection parameters of the inverter;			
		3. If fault still cannot be removed after the first			
		two steps, please contact your distributor or			
		the after-sales service center.			
Fast PV1 over-current		1. Check whether the PV input terminal is			
		normal:			
	The average	2 Check whether the PV input configuration			
	instantaneous input	is out of the allowable range of the			
	current of PV1 or PV2 is	protoction percentation of the involtor			
Fast PV2 over-current	higher than the set upper	protection parameters of the inverter,			
	limit.	3. If fault still cannot be removed after the first			
		two steps, please contact your distributor or			
		the after-sales service center.			
PV1 over-current		1. Check whether the PV input terminal is			
		normal;			
		2. Check whether the PV input configuration			
	The average input current	is out of the allowable range of the			
	of PV1 or PV2 is higher	protection parameters of the inverter;			
PV2 over-current	than the set upper limit.	3. If there are no above-mentioned problems,			
		the fault still cannot be removed after			
		restarting the inverter, please contact your			
		distributor or the after-sales service center.			

Insulation impedance to ground fault	The PV string is short circuited with the protective ground, or the installation environment of the PV string is humid for a long time	 Check whether the inverter is reliably grounded; Check whether the positive and negative poles of the PV panel are short connected with the ground cable; Wait for the inverter to recover; If the fault still cannot be removed, please contact your distributor or the after-sales service center.
Battery unconnected	1.The battery is not properly connected; 2. The battery fuse is blown.	 Check whether the battery cables are properly connected and whether the battery voltage is normal; If there is still error message, please contact your distributor or the after-sales service center.
Battery over-temperature	 The battery installation position is not ventilated; High ambient temperature. 	 Check whether the operating environment temperature exceeds the operating temperature range of the inverter, if yes, please improve the operating environment; If there is no above-mentioned problem, the fault still cannot be removed after restarting the inverter, please contact your distributor or the after-sales service center.
Fan fault	Fan fault	 Check whether the fan works properly. Power off and restart the machine; If there is still error message, please contact your distributor or the after-sales service center.

12 Technical data

12.1 System specification

Model	EAHI10KTHSeries	EAHI15KTHSeries	EAHI20KTH Series
System composition			
Battery system model	EHBS-P5-TH		
Battery type		IFpP (li-ion)	
Capacity of single module		5222.4Wh	
Module quantity of single			
battery pack system		1~4	
Capacity of single battery			
pack system		5-20 KWN	
Maximum quantity of			
expansible battery packs		3	
in battery system			
Quantity of battery	4. Ermanaiki	. (4	h - 44 - m - m - a - (a)
distribution box	1, Expansible	e (1 distribution box per	рацегу раск)
Inverter model	EAHI10KTH-S	EAHI15KTH-S	EAHI20KTH-S
Inverter module	1, (Expansi	ble to connect 6 inverter	s in parallel)
Rated power of inverter	10kW	15kW	20kW
General system parameter			
Protection grade	IP66		
Operating temperature	-20°C ~+55°C		
Heat dissipation method	Natural cooling	Smart	cooling
Altitude		3000m	
Noise level (1m)	≤25dB ≤45dB ≤50dB		≤50dB
Installation mode		Floor and stacked type	

Inverter specification

Model	EAHI10KTH-S	EAHI15KTH-S	EAHI20KTH-S
PV input parameter			
Maximum input power	20kW	30kW	30kW
Maximum input voltage		1000Vdc	
Rated input voltage		650Vdc	
Starting voltage		180Vdc	
Minimum operating voltage		160Vdc	
MPPT voltage range		160~950Vdc	
MPPT voltage range at full power		625-800V	
Maximum input current per MPPT circuit	16A / 16A	16A / 32A	16A / 32A
Maximum short circuit current per MPPT	24A / 24A	24A / 48A	24A / 48A
MPPT quantity		2	
String quantity per MPPT	1/1	1/2	1/2
Battery input parameters			
Battery type		IFpP~(li-ion)	
Voltage range		650~980Vdc	
Maximum charge/discharge current	15.4A / 15.4A	23.1A / 23.1A	30.8A / 30.8A
AC input/ output parameter (grid)			
Maximum apparent power of grid	15kVA	22.5kVA	30kVA
Maximum input current	21.7A	32.6A	40A
Input voltage range		320~480Vac	
Input frequency range		50±5Hz / 60±5Hz	
Rated output power	10kW	15kW	20kW
Maximum output apparent power	11kVA	16.5kVA	22kVA
Rated output voltage		3/N/PE,380Vac / 400\	/ac
Rated output frequency		50 Hz / 60Hz	
Rated output current	15.2A / 14.4A	22.8A / 21.7A	30.4A / 28.9A
Maximum output current	16.7A / 15.8A	25.1A / 23.8A	33.5A / 31.8A
Power factor	>0.99 (0.8 leading ~ 0.8 lag)		
THDI		≤3% (at rated power	r)
Generator input parameters			
Maximum input power	10kW	15kW	20kW
Maximum input current	15.2A	22.8A	30.4A

AC output parameter(backup load)				
Rated output power	10kW	15kW	20kW	
Maximum apparent power	10kVA	15kVA	20kVA	
Rated output voltage		3/N/PE,380Vac / 400\	/ac	
Rated output frequency		50Hz / 60Hz		
Rated output current	15.2A / 14.4A	22.8 / 21.7A	30.4A / 28.9A	
Maximum output current	15.2A	22.8A	30.4A	
THDV		≤ 3% (linear load)		
Switching time		≤20ms		
Efficiency				
Maximum efficiency		98.2%		
MPPT efficiency		99.9%		
Protection				
	Over/under-v	voltage protection, over	/under-frequency	
	protection, overlo	oad protection, output sl	nort circuit protection,	
Protection	over-temperature	e protection, residual cu	rrent monitoring unit,	
	output over-current protection, insulation impedance detection,			
	anti-Island protection and surge protection			
Output over-voltage protection		DC Type II/AC Type	II	
Other	Γ			
Dimensions (W*H*D)		650*640*270mm		
Packing size (W*H*D)		770*750*370mm		
Net weight		45kg		
Gross Weight		52kg		
Parallel operation	Support the parallel operation of 6 inverters			
Topology	Non-isolated			
		Non-Isolaled		
IP protection grade		IP66		
IP protection grade Operating temperature		IP66 -25°C ~+60°C		
IP protection grade Operating temperature Heat dissipation method	Natural cooling	IP66 -25°C ~+60°C Smart	cooling	
IP protection grade Operating temperature Heat dissipation method Altitude	Natural cooling	IP66 -25°C ~+60°C Smart 3000m	cooling	
IP protection grade Operating temperature Heat dissipation method Altitude Noise level (1m)	Natural cooling ≤25dB	IP66 -25°C ~+60°C Smart 3000m ≤45dB	cooling ≤50dB	
IP protection grade Operating temperature Heat dissipation method Altitude Noise level (1m) Installation mode	Natural cooling ≤25dB	IP66 -25°C ~+60°C Smart ∩ 3000m ≤45dB Floor and stacked typ	cooling ≤50dB	
IP protection grade Operating temperature Heat dissipation method Altitude Noise level (1m) Installation mode Standard	Natural cooling ≤25dB	IP66 -25°C ~+60°C Smart 3000m ≤45dB Floor and stacked typ	cooling ≤50dB pe	
IP protection grade Operating temperature Heat dissipation method Altitude Noise level (1m) Installation mode Standard Grid-tied	Natural cooling ≤25dB VDE 0126, EN50	IP66 -25°C ~+60°C Smart 3000m ≤45dB Floor and stacked typ 1549, DIN VDE V 0124-	cooling ≤50dB be 100:2020, VDE-AR-N	
IP protection grade Operating temperature Heat dissipation method Altitude Noise level (1m) Installation mode Standard Grid-tied	Natural cooling ≤25dB VDE 0126, EN50 4105:201	IP66 -25°C ~+60°C Smart 3000m ≤45dB Floor and stacked typ 1549, DIN VDE V 0124- 8,PPDS,CEI 0-21,NC R	cooling ≤50dB De 100:2020, VDE-AR-N FG+PTPiREE	
IP protection grade Operating temperature Heat dissipation method Altitude Noise level (1m) Installation mode Standard Grid-tied Safety regulation	Natural cooling ≤25dB VDE 0126, EN50 4105:2013	IP66 -25°C ~+60°C Smart 3000m ≤45dB Floor and stacked typ 9549, DIN VDE V 0124- 8,PPDS,CEI 0-21,NC R EC/EN 62109-1/-2, AS6	cooling ≤50dB De 100:2020, VDE-AR-N FG+PTPiREE 52109	

Battery specification

Model	EHBS-P5-TH
System composition	
Battery type	IFpP (li-ion)
Module capacity	5222.4Wh
System capacity	5-20kWh, expansible
Module quantity of single battery	1.4
pack system	1~4
Maximum quantity of expansible	2
battery packs in battery system	5
Rated voltage	750Vdc
Voltage range	600~1000Vdc
Maximum charge/discharge	2 44 / 5 54
current	3.4A/ 5.5A
Communication port	CAN/RS485
Dimensions (W*H*D)	650*370*270mm
Packing size (W*H*D)	765*465*385mm
Net weight	59kg
Gross Weight	63kg
Topology	High frequency isolation
IP protection grade	IP66
Operating temperature	-20°C ~55°C
Heat-dissipating method	Natural heat dissipation
Heating mode	PTC heating
Altitude	≤3000m
Noise level (1m)	< 40dB
Installation mode	Floor and stacked type
Standard	
	IEC/EN 62619 2022, IEC/EN 62477, ISO 13849, IEC/EN 62040-
Safety regulation	1,IEC/EN 60730-1
EMC	IEC 61000-6-1,EN/IEC 61000-6-3
Transport	UN 38.3
Warranty period	5 years

Short circuit explaination: Max. Short Circuit Current/Time: 972A/500us.

Specification of battery distribution box

Model	PDU-GU-Y (integrated)	PDU-GU- F (split)	
Parameter			
Battery interface	Yes	No	
Maximum current	60A		
Voltage range	550~1000Vdc		
Display	LED		
Dimensions (W*H*D)	650*150*270mm		
Packing size (W*H*D)	765*370*385mm(including base)		
Net weight	12.5kg		
Gross Weight	23kg		
IP protection grade	IP66		
Warranty period	5 years		
Other			
Dimensions of fixing base	650*100*270mm		
(W*H*D)			
Net weight	6kg		

12.2 Nameplate

The user can identify the inverter through the nameplate on the side of the inverter, which contains the model, important parameters, certification mark and origin information of the inverter, and must not be damaged or blocked.

MODEL: EAHI20KTH-S

HYBRID INVERTER

Max.input power	30kW
Rated input voltage	650Vdc
Max.input voltage	1000Vdc
MPPT voltage range	160Vdc ~ 1000Vdc
Max.input current	16A / 32A
PV short circuit current	24A / 48A
MPPT number	2
Battery input/output rati	ng
Battery type	Li-ion
Rated voltage	750Vdc
Battery voltage range	650Vdc ~ 980Vdc
Max.charging power	20kW
Max.charging current	30.8Adc
Max.discharging power	20kW
Max.discharge current	30.8Adc
Grid rating	
Input voltage range	320Vac ~ 480Vac
Max.input current	43.5Aac
Max.input apparent power	30kVA
Rated output voltage	3L/N/PE, 380Vac / 400Vac
Rated frequency	50Hz / 60Hz
Rated input/output power	2014
Max.output apparent power	22k\/A
Rated input/output current	30.4Aac / 28.9Aac
Max output current	33 5Aac / 31 8Aac
Power factor range	0.8 leading ~ 0.8 lagging
Backup load output ratin	a
Rated output voltage	3L/N/PE_380Vac / 400Vac
Rated output frequency	50Hz / 60Hz
Pated output nower	201/27 00/12
Max output apparent nower	2012/4
Max.output apparent power	20 (Apr / 28 0 Apr
Generator input	30.4Mac / 20.7Mac
Max input nower	2014W
Maximput porter	30.4Aac
Efficiency	Journal
Max efficiency (DV to Grid)	08.2%
MDDT afficiency	00.0%
e la	77.770
General parameter	
Protection rating	Class I
ingress protection rating	IPOD
Ambient temperature range	=25~~60"
Altitude	≤3000m
Safety symbols and certif	ication marks

Fig. 12.2.1 Nameplate information (which may be changed without prior notice, and subject to the

actual product)

13 EAHI10-20KTH Series packaging and disposal

13.1 EAHI10~ 20KTH Series packaging

- When the equipment packaging permits, the inverter and the battery system equipment can be packed in the original material packaging;
- If the original packaging is not available, you can also pack the product by the packaging that conforms to the product packaging requirement and can pack the entire product by a easy carrying method.

13.2 EAHI10~ 20KTH Series disposal

Dispose of e-waste, including the inverters, the battery system equipment or other accessories, according to local regulations.

14 Appendix

14.1 Terminology

Name	Description	
ANTI-TIED	It means that the inverter is not allowed to supply the power to the grid	
GRID-TIED	It is opposite to ANTI-TIED, in which the inverter is allowed to supply the power to the grid	
AC CHA.	It means that the inverter is allowed to receive the power from the grid to charge the battery, see Chapter 7 for details.	
TIMER.SWITCH	It means that the inverter can be set to run in different operating modes at different time periods, see section 7.9.3 for details.	
SOC	State of charge also known as remaining capacity refers to the ratio of the current available charge of the battery to the charge in fully charged state, which can be expressed in percentage ranging from 0% to 100%.	
BMS	Battery manager system	
EOD	End of discharge, in this series of PV energy storage products, refers to the voltage or SOC point at which the battery is prohibited from discharging. If the battery voltage is lower than this value or if the SOC is lower than the lower limit, the inverter will give the "battery under-voltage" alarm, and the battery is prohibited from discharging.	
DOD	Depth of charge, is one of the ways reflecting the depth of battery discharge of the energy storage inverter, and another way to reflect the depth of discharge is the SOC.	
Equalized charging	Constant current charging stage, in which the charging voltage gradually increases till the equalized charging voltage.	
Equalized charging voltage	Target voltage value achieved by constant current charging, which can be set within the specified range.	
Floating charge	Constant voltage charging phase, in which the charging current is gradually reduced to maintain the battery voltage at the set floating charge voltage.	
Floating charge voltage	Constant charging voltage, which can be set within a specified range	
Household load	It refers to the load that is connected between the "AC input" port of the inverter and the CT/ kilowatt-hour meter. The power of the household load is not limited by the inverter (see 6.1. System connection diagram).	
Backup load	It refers to the load connected with the "Load output" port of the inverter. The power of the backup load is limited by the load capacity of the inverter during off-grid operation.	
BACK-UP	It is indicated by silk-screen "Load output" or "EPS". Here, they have the same meaning and all refer to the "off-grid load" port.	